
N@8-16367

An Inference Engine for Embedded Diagnostic Systemst

Barry R. Fox

Artificial Intelligence Group

McDonnell Douglas Research Laboratories
PO Box 516, St. Louis, MO 63166

Larry T. Brewster

Department of Computer Science

University of Missouri-Rolla

Rolla, MO 65401

Abstract. This paper describes the implementation of an inference engine for embedded

diagnostic systems. This system consists of two distinct parts. The first is an off-line

compiler which accepts a propositional logical statement of the relationship between facts

and conclusions and produces the data structures required by the on-line inference engine.

The second part consists of the inference engine and interface routines which accept asser-

tions of fact and return the conclusions which necessarily follow. Three design goals of this

inference engine are emphasized. First, it is logically sound. Given a set of assertions it

will generate exactly the conclusions which logically follow. At the same time, it will detect

any inconsistencies which may propagate from an inconsistent set of assertions or a poorly
formulated set of rules. Second, the memory requirements are fixed and the worst-case

execution times are bounded at compile time. Third, the data structures and inference al-

gorithms are very simple and well understood. This system has been implemented in Lisp,
Pascal, and Modula-2. The data structures and algorithms are described in detail.

Introduction

Advanced aircraft and spacecraft are becoming increasingly reliant on onboard elec-

tronic systems. At the same time, onboard electronic systems are becoming increasingly

complex, interrelated, and interdependent. Because of this reliance, it is necessary to con-

stantly validate the behavior of onboard electronic systems, and when errors are detected,

to quickly identify and isolate the faulty subsystems. Advances in artificial intelligence

technology make it possible to construct embedded diagnostic systems which can monitor,
validate, diagnose, and when necessary, deactivate critical onboard systems.

Embedded diagnostic systems impose implementation constraints which eliminate the

use of most of the commercially available artificial intelligence tools. The implementation

language and target processor are often dictated by contract. The memory requirements

must be bounded and modest and the inference cycle must be bounded and predictable.
The reliance on such systems for mission safety and success dictates that the behavior of

the inference engine be demonstrably correct.

Many validation and diagnostic problems can be represented and solved entirely within

the framework of zero-order (propositional) logic. For example, those problems which have

traditionally been solved using decisions tables, debugging flowcharts, or decision trees

involve a finite number of facts having true or false values which in turn are logically
related to a finite number of intermediate and final conclusions. Generic facilities for the

construction of embedded diagnostic systems are provided in the Zero-Order Environment

for Test and Analysis (Zeta) described below.

Research supported in part by the McDonnell Douglas Independent Research and

Development Program.

47 =;:.;.2_DING PA_E BLANK NOT FiLI_ED



Design Goals

The architecture and implementation of Zeta were guided by several design goals.

Emphasis was placed on achieving generality and simplicity without sacrificing correctness

nor capability.

The first goal was to make the system independent of any specific programming lan-

guage or computer architecture. This would allow the system to be implemented with

familiar programming languages on conventional architectures. At the same time, specific

onboard computer architectures would not be eliminated, nor would special Lisp or Prolog

architectures be excluded. This goal further requires that the data structures and algo-

rithms be documented in sufficient detail that a new implementation in a new environment

can be produced quickly.

The second goal was that the inference engine be generic. It should be possible

to adapt a working inference engine to new diagnostic problems simply by creating and

compiling the knowledge base for those new problems. A working implementation of the

inference engine should be available as re-usable, off-the-shelf software.

The third goal was to make the inference engine demonstrably correct. Given a knowl-
edge base which defines the logical relationship between observations and conclusions and

given a set of assertions the inference engine should generate exactly the conclusions which

logically follow. At the same time it should detect any inconsistencies which may propa-

gate from an inconsistent set of assertions or a poorly formulated set of rules. Moreover,

it should be possible to establish these properties from an analysis of the data structures

and algorithms.

The fourth goal was to make the inference engine operate successfully and correctly

with partial information. It should be possible to assert facts one at a time. With each

assertion, the inference engine should be able to derive exactly those conclusions which

follow from the aggregate of the present and preceding assertions.

The final goal was that, given a fixed knowledge base, the inference engine should have

time and memory requirements which are both bounded and modest. This goal strongly

influenced the choice of data structures and algorithms; it required the introduction of

certain optimizations; and it also placed some limitations on the acceptable forms for a

knowledge base.

External Knowledge Representation

The input to this system is a formula composed of the logical operators and, or,

xor, not, and implies, parentheses for constructing sub-expressions, and symbols, which

denote propositional parameters of the system under consideration. There is no explicit

distinction between observations and conclusions. The input formula simply identifies the

relevant boolean parameters of the system and the logical relationships between them.

The input formula can be a conjunction of rules of the form (antecedent implies

consequent) but the input can be considerably more general than that allowed by most

familiar rule-based systems. Most rule-based systems require statements in the form of an

implication with additional restrictions that disjunctions (or more complicated expressions)

48



arenot allowedin the consequent.For example,the phrase(alpha xor beta xor gamma)
is very hard to formulate in a traditional rule-basedsystemwithout enumerating one rule
for eachrelevant combination of alpha, beta, and gamma. The input to this systemcan be
an arbitrary boolean formula (with somelimitations imposed only to eliminate syntactic
ambiguity).

The only significant restriction on the input is semantic. It is assumedthat the
inferenceengine will only be used for mapping observationsinto conclusionsand will not
be used to derive new rules or prove theoremsabout the interrelationships betweenrules.
For example, given the rule (((alpha implies beta) and gamma) implies delta) and
a separaterule (alpha implies beta) it is certainly true that (gamma implies delta).
However,the detection and resolution of all suchinter-rule relationships would be too time
consumingto perform on-line. To guaranteeboundedtime and spacerequirementsfor the
inferencecycle, it is assumedthat all suchcombinations of rules have beenidentified and
resolvedbeforehand.

Internal Knowledge Representation

While the input to this system may be an arbitrary propositional formula, a much
more regular structure is required for an efficient on-line inferencecycle. For that reason,
ZETA is composedof two parts. An off-line compiler which normalizes the given propo-
sitional formula and an on-line inferenceengine which performs the deductive processes.
This normalization proceedsin four stages.First, expressionsinvolving xor and implies
are mapped into expressionsinvolving only the operators and, or, and not. Second,
all negatedsub-expressionsare recursively rewritten using deMorgan's law, resulting in a
formula composedonly of and_ or, and positive or negativepropositional variables. (Here-
after, positive or negativepropositional variableswill be referred to as literals. Third, the

given formula is converted to conjunctive normal form through applications of the boolean

distributive law, resulting in a conjunction of disjunctive clauses which in turn are com-

posed only of literals. Finally, each disjunctive clause is mapped into a sequent of the

form (conjunction implies disjunction). The natural interpretation of a sequent is that

the truth of each literal in the antecedent implies the truth of at least one literal in the

consequent. By convention, an empty antecedent is implicitly true, while an empty conse-

quent denotes a contradiction. The sequent constructed from a disjunctive clause consists

of an empty antecedent and a consequent identically equal to the given clause. Deductive

processes which may be applied to sequents are discussed in the next section.

Inference Algorithm

Activities of the on-line inference engine are driven by a series of assertions and retrac-

tions of fact. It is useful to allow both assertion and retraction for very practical reasons.

During development of a knowledge base, the knowledge engineer may wish to establish

a particular state of the inference engine and then explore situations which can emanate

from that state. It would be laborious to repeatedly reset the inference engine and then

carry it to each situation through a series of assertions. Instead, it is better to be able

to assert a fact, to determine its effect, and then to retract that fact in order to explore

the immediate effect of other faults or conditions. On-line, this ability can be used to

ensure the integrity of the diagnostic process in time critical situations. For instance, some

physical conditions are intermittent. In a time-critical situation it would be risky to reset

49



the inference engine and repeat the entire history of observations and assertions simply

because an intermittent physical condition no longer holds. In other situations it may be

discovered that a sensor itself is faulty. Again, time may not permit a complete reset of

the inference engine just to remove the conclusions derived from that erroneous sensor.

The inference cycle begins by placing an assertion on an agenda of activities to be

performed. On each inference cycle one item is removed from the agenda and processed,

but additional items may be placed on the agenda as a result.

The first step in processing an assertion is to determine whether it is consistent with

the present state of the inference engine. Three conditions may hold. An assertion is

an assignment of a boolean value to one of the propositional variables. If the variable is

presently undefined, then any assertion for that proposition is considered to be consistent.

If the variable presently has a value, and the value to be bound to that proposition is the

same, then the assertion is considered to be redundant. However, if the variable presently

has a value but it differs from the value to be bound to that proposition, then the assertion
is considered to be inconsistent.

The second step in processing an assertion is to derive any conclusions which necessar-

ily follow. This step is unnecessary for redundant assertions and must not be performed

for inconsistent assertions. Given the semantic restrictions on the knowledge base dis-
cussed above, the derivation of necessary conclusions is both correct and efficient. This is

accomplished by two techniques. First, the inference engine makes use of an index, con-

structed when the knowledge base was compiled, and inspects only those sequents which

can potentially produce a conclusion from the given assertion. The index does increase the

memory required to store the knowledge base by approximately a factor of two. However,

the additional memory requirement can be more than offset by the following guarantee.

The time required to process an assertion is independent of the size of the knowledge base;

instead, it is related to the number of sequents which contain a given literal, and upon the

number of conclusions which depend upon it. Second, instead of evaluating or analyzing a

sequent, the inference engine applies a very simple rewriting rule based upon the natural

interpretation of a sequent. Given an assertion that a literal L should be true, and given a

sequent which contains not-L in its consequent, then some other literal in the consequent

must be true. Hence, remove not-L from the consequent and include L in the antecedent.

If only one literal remains in the consequent after this rewriting, then that literal must be

true and an appropriate assertion is placed on the agenda.

A significant advantage of this sequent representation and method of inference is that

assertions are reversible by retraction. The inference cycle begins by placing a retraction

on the agenda. On each inference cycle one item is removed from the agenda and processed.

As before, other retractions may be placed on the agenda as a result.

Like an assertion, a retraction is consistent if the value to be removed is equal to

the value which a variable presently holds; it is inconsistent if the value to be removed

is the opposite of the value which the variable presently holds; and it is redundant if the

variable is presently undefined. There is an additional case. The value to be removed may

match the value which the variable presently holds, but that value may be required or

supported by the consequent of some sequent. Therefore that retraction would introduce

an inconsistency if performed and is considered to be impossible. As with an assertion,

5O
b_



a retraction is performed only if it is consistent with the present state of the inference

engine.

The process of rewriting sequents under retraction is the reverse of the assertion

process described above. Given a retraction of some literal L, and given a sequent which

contains L in its antecedent, first inspect the consequent of that rule. If only one literal

remains in the consequent before this rewriting, then this retraction may necessitate the

retraction of the consequent as well. If no other sequent supports this consequent, then

place the appropriate retraction on the agenda and perform the rewriting: remove L from

the antecedent and include not-L in the consequent. If the consequent has other support

before the rewriting, or if the consequent contains more than one literal, then perform only

the rewriting step.

Architecture

The architecture of this system can be sketched at two levels. At the highest level

the system consists of two separate programs. The first accepts a propositional forlnula

which defines the logical relationship between the boolean parameters of the system to

be monitored. The output of the first program is tile program fragments _lecessary to

declare and initialize the data structures for the second program. The second program

is produced by combining these program fragments with the off-the-shelf code for the

inference engine. This two-stage process removes any parsing and normalization costs
from the on-line system and it produces a diagnostic program of minimal size.

The lower level structure of the first program is not significant. The program can be

viewed as a black box which performs the compilation function. Tlle structure of the second

program is significant. It provides the interface to the inference engine. This interface
includes an initializing procedure which resets all propositional values to undefined and

rewrites every sequent to the form (() implies disjunction). There is a procedure for

making an assertion which requires two parameters, a propositional identifier and a value

to be bound to that variable, and which initiates the inference cycle described above.

There is a procedure for making a retraction which requires only a I)ropositional identifier,
assuming that the user wishes to retract the present value of the given proposition. All

deductive results produced during an inference cycle are placed on a stack; these results

can be retrieved one at a time by simple procedure calls. Other procedures exist which

will return the present value of a proposition, its symbolic name, etc.

Conclusion

The Zero-Order Environment for Test and Analysis system has characteristics which

make it suitable for embedded diagnostic systems. Notably, the representation and meth-

ods of inference are independent of any specific programming language or computer ar-
chitecture; the time and memory requirements are modest and the upper bounds may be

determined prior to run time; the inference engine is generic and can be adapted to new

applications by introducing a new knowledge base; the inference engine is demonstrably

correct generating exactly the conclusions which follow from a given set of assertions while

detecting any inconsistency; the inference engine complements the facility for incremental
assertion with a facility for incremental retraction.

51




